

HyPneu GmbH Chemnitz Zwickauer Straße 137 0 9 1 1 6 Chemnitz Telefon (0371) 3 82 65 19 / 3 82 65 20 Telefax (0371) 3 82 65 21

Axialkolbenmotoren nicht verstellbar · TGL 10857 und TGL 25-15207

Axialkolbenmotoren nicht verstellbar TGL 10857 und TGL 25-15207

Axialkolbenmotoren, nicht verstellbar, für einen Nenndruck von 6,3 und 8,0 MPa sind seit Jahren bewährte und zuverlässig arbeitende Antriebsgeräte, die in den vielseitigsten Anwendungsgebieten der Technik eingesetzt sind.

Der wesentliche Vorteil der Axialkolbenmotoren gegenüber Elektromotoren besteht darin, daß ihre Drehzahl mit einfachsten Mitteln durch Änderung des zugeführten Volumenstromes geregelt und den jeweiligen geforderten Geschwindigkeitsverhältnissen der anzutreibenden Arbeitsmaschinen in einem großen Bereich stufenlos angepaßt werden kann.

Die Axialkolbenmotoren besitzen infolge ihrer geringen umlaufenden Massen ein hohes Beschleunigungs- und Verzögerungsvermögen, wodurch sie sich für den Umkehrantrieb gut eignen.

Das Anfahren unter Last mit Nenndrehmoment aus dem Stillstand bereitet keine Schwierigkeiten.

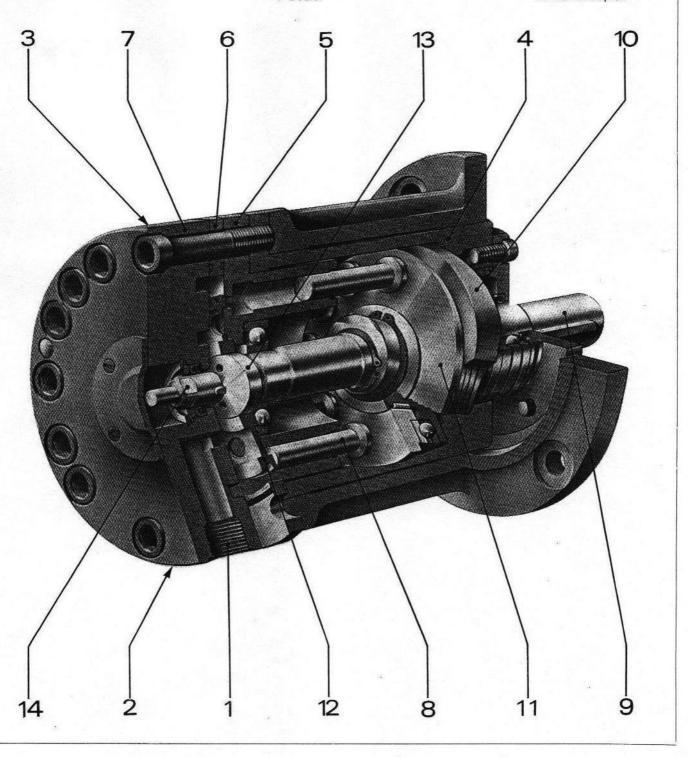
Auch bei kleinsten Drehzahlen und maximalen Drehmomenten ist noch eine gute Gleichförmigkeit der Drehbewegung vorhanden.

Weitere Merkmale dieser Axialkolbenmotoren sind u. a.:

- kleinste Einbaumaße
- geringes Masse-Leistungs-Verhältnis
- robuste Konstruktion
- geringe Geräuschentwicklung
- minimaler Wartungsaufwand.

Wirkungsweise

Im feststehenden Motorkörper sind in axialer Richtung kreisförmig zylindrische Bohrungen angeordnet, in denen axial freibewegliche Kolben gleiten. Diese Kolben werden nacheinander mit hydraulischem Druck beaufschlagt und wirken auf die Taumelscheibe, die die Kräfte über ein Axialkugellager auf die fest mit der Abtriebswelle verbundene Schiefscheibe überträgt. Die tangentialen Komponenten dieser wirkenden Kräfte erteilen der Abtriebswelle das Drehmoment. Nach verrichteter Arbeit drückt die Taumelscheibe die drucklosen Kolben wieder in ihre Ausgangslage zurück, wobei das entspannte Fluid über die Rücklaufleitung abfließt. Die wechselweise Verbindung der Räume hinter den Kolben mit der Druck- und Rücklaufleitung im Drehsinn der Motorwelle wird von einer Steuerscheibe gesteuert. Diese gleitet auf einer Exzenterscheibe, die wiederum fest auf der Motorwelle sitzt.


hydraulik

Schnittbild

Axialkolbenmotor nicht verstellbar kombiniert mit Flanschhülse

- 1 Anschluß für Druckleitung (Rücklaufleitung)
- 2 Anschluß für Rücklaufleitung (Druckleitung)
- 3 Anschluß für Leckleitung
- 4 Gehäuse
- 5 Block (Zylinderkörper)
- 6 Ring
- 7 Deckel

- 8 Kolben
- 9 Welle
- 10 Schiefscheibe
- 11 Taumelscheibe
- 12 Steuerscheibe
- 13 Exzenterscheibe
- 14 Vierkantzapfen

Technische Daten

Das in der Tabelle angegebene Drehmoment wird vom Motor bei Nenndruck abgegeben. Es ist annähernd proportional dem Betriebsdruck und annähernd konstant über den gesamten

Drehzahlbereich.

Betriebsdrehzahl Die Nenndrehzahl der Motoren beträgt 1000 min-1. Die Drehzahl ist veränderbar durch

Änderung des zugeführten Volumenstromes. Der Schluckstrom pro Umdrehung ist konstant.

Drehrichtung rechts oder links, je nach Durchflußrichtung des Volumenstromes.

Leitungsanschlüsse Druckleitung am Anschluß 1, (Rücklaufleitung am Anschluß 2):

Drehrichtung rechts auf Wellenende gesehen

Druckleitung am Anschluß 2, (Rücklaufleitung am Anschluß 1):

Drehrichtung links auf Wellenende gesehen Leckleitung: Anschluß 3

Betriebsdrücke

Der Nenndruck ist maximaler Dauerbetriebsdruck. Kurzzeitige Drucküberschreitungen bis zu

20 % können von den Geräten aufgenommen werden.

Der Ausgangsdruck muß $p_a \ge 0.5 MPa$ betragen. Er ist für einen störungsfreien Betrieb unbedingt erforderlich.

Der Leckdruck darf maximal $p_1 = 0.05$ MPa betragen.

Fluids und Betriebstemperatur

Hydraulikflüssigkeiten nach TGL 17542/01 und /03.

Die zulässigen Betriebstemperaturen sind abhängig von den verwendeten Fluids.

Folgende Fluidtemperaturen (gemessen am Eingangsstutzen) sind einzuhalten:

bei Verwendung von H 50:

 $T_{fl} = 293 \text{ bis } 343 \text{ K (+20 bis +70 °C)}$

bei Verwendung von H 36, E 36 oder HLP 36:

 $T_{fl} = 283 \text{ bis } 333 \text{ K (+10 bis +60 °C)}$

Verwendung von H 20 oder HLP 20: $T_{fl} = 263 \text{ bis } 313 \text{ K } (-10 \text{ bis } +40 ^{\circ}\text{C}).$

Andere Hydrauliköle oder selbstschmierende Flüssigkeiten nach Rücksprache mit dem Gerätehersteller. Tiefere Temperaturen sind möglich bei Verwendung eines geeigneten Hydraulik-

öles. Umgebungstemperaturbereich 248 bis 333 K (-25 bis +60 °C).

Viskositätseinsatzbereich

 $20 \cdot 10^{-6}$ bis $800 \cdot 10^{-6} \frac{m^2}{s}$ (20 bis 800 cSt)

Bauformen

Die Motoren werden als Grundausführung mit Paßfederwellenende geliefert. Durch Kombination mit Befestigungsgruppe Flanschhülse bzw. Fußhülse können die Motoren für Flansch-

bzw. Fußbefestigung ausgerüstet werden.

Die Antriebswelle ist auf der zweiten Seite mit einem Vierkant und bei den Geräten nach TGL 10857 zusätzlich mit einem Zapfen versehen, die beide nach Abnehmen der Abdeckung

zugänglich und als zweiter Abtrieb verwendbar sind.

Belastbarkeit der Wellenenden siehe Tabelle.

Einbaulage

Die Motoren können in beliebiger Einbaulage betrieben werden. Die Leckleitung muß dabei so verlegt werden, daß der Motor vollständig mit Fluid gefüllt bleibt.

Kennwerte

Axialkolbenmotoren Nenndruck 6,3 MPa

Nenngröße	Nenn- verdrängungs- volumen	Nen	ndruck ¹⁾	Nenn- drehzahl	Drehzahl- bereich2)	Tatsächliches Verdrängungs- volumen	b	noment ei druck	Ausga	ngsdruck	Massen- trägheits- moment3)	Masse
	cm ³	MPa	kp/cm ²	min ^{—1}	min-1	cm ³	Nm	kpm	MPa	kp/cm ²	kg/cm ²	≈kg
20/6,3	20				10 bis 1500	19	16	1,6	V		6,5	10
32/6,3	32	6,3	63	1 000	10 bis 1300	31,6	25	2,5	≥ 0,5	≥5	12,5	14
50/6,3	50				10 bis 1200	49,1	40	4			22,5	22

¹⁾ Überlastung bis 8 MPa (80 kp/cm²) zulässig

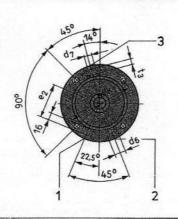
Axialkolbenmotoren Nenndruck 8,0 MPa

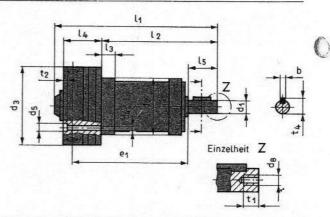
Nenngröße = Nennverdrängungs- volumen	Ner	nndruck ¹⁾	Nenn- drehzahl	Drehzahl- bereich	Tatsächliches Verdrängungs- volumen	b	noment ei druck	Ausgar	ngsdruck	Massen- trägheits- moment ²)	Masse
cm ³	MPa	kp/cm ²	min-1	min-1	cm ³	Nm	kpm	MPa	kp/cm ²	kg/cm ²	≈ kg
63					62,3	67	6,7			52,4	28
100	8	80	1 000	10 bis 1000	100	107	10,7			94	40
160	•	80	1000	10 Bis 1000	175	185	18,5	- ≥0,5	≥5 -	290	83
250					255	270	27			455	115

¹⁾ Überlastung bis 10 MPa (100 kp/cm²) zulässig

²⁾ Bei Überschreitung des Drehzahlbereiches sind die Einsatzbedingungen mit dem Hersteller zu vereinbaren

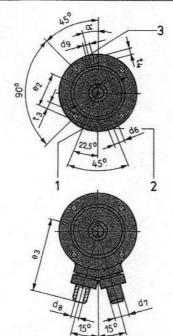
³⁾ Errechnete Werte

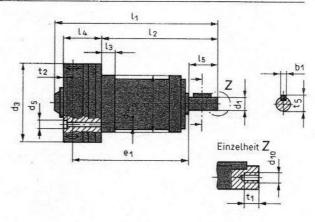

²⁾ Errechnete Werte .


Abmessungen

Axialkolbenmotoren Nenndruck 6,3 MPa · TGL 10 857

Nenn- größe	b	d ₁ k6	d ₂ g6	d ₃	d ₄	d ₅	d ₆	d ₇	d ₈	e ₁	e ₂	k ₁	11	12	13	14	15	t ₁	t ₂	t ₃	t ₄
20/6,3	6	18	90	125	9	14	M 22 x 1,5	M 14 x 1,5	M 5	185	61	105	250	171	20	70	40	12	9	11	20,5
32/6,3	6	20	100	140	9	14	M 22 x 1,5	M 16 x 1,5	M 5	215	68	120	291	205	25	78	50	12	10,5	12	22,5
50/6,3	8	25	120	160	11	16,5	M 27 x 2	M 16 x 1,5	M 8	236	78	135	322	236	30	78	60	17,5	11	12	28


- Anschluß für Druckleitung (Rücklaufleitung)
- Anschluß für Rücklaufleitung (Druckleitung)
- 3 Anschluß für Leckleitung

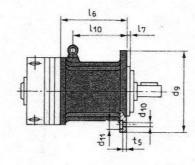


Axialkolbenmotoren Nenndruck 8,0 MPa · TGL 25-15 207

Nenn- größe	b ₁	d ₁ k6	d ₂ g6	d ₃	d ₄	d ₅	d ₆	d ₇	d ₈	dg	d ₁₀	e ₁	e ₂	e ₃	k ₁	11	12	13	14	15	t ₁	t ₂	t ₃	t ₄	, t ₅	α
63	8	30	130	180	14	20	M 33 x 2	-	-	M 16 x 1,5	M 8	268	88	-	150	379	278	30	92	80	17,5	13	18	12	33	14°
100	10	35	145	200	14	20	M 42 x 2	-	-	M 16 x 1,5	M 12	304	96	_	170	419	308	30	102	80	27	18	22	12	38,5	15°
160	14	45	190	255	18	26	-	42	32	M 18 x 1,5	M 16	369	-	194	220	519	382	35	128	110	33	16,5	-	15	49	15°
250	16	50	210	275	18	26	_	50	38	M 18 x 1,5	M 16	400	-	236	240	566	407	40	150	110	33	17	_	17	55	150

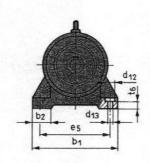
- Anschluß für Druckleitung (Rücklaufleitung)
- Anschluß für Rücklaufleitung (Druckleitung)
- 3 Anschluß für Leckleitung

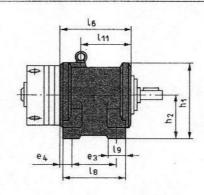
DRSTA hydraulik


Flanschhülse

Nenngrößen 1.1, 2.1 und 3.1 · TGL 10 857 Nenngrößen 1.1 und 2.1 · TGL 25-15 207

Nenngrößen 3.1 und 4.1 · TGL 25-15 207





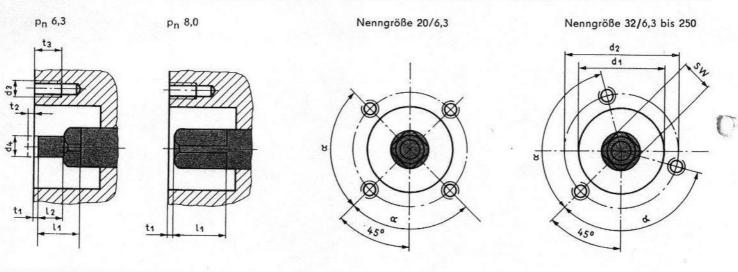
Fußhülse

(

Nenngrößen 1.2, 2.2 und 3.2 · TGL 10 857 Nenngrößen 1.2, 2.2, 3.2 und 4.2 · TGL 25-15 207

TGL 1	1085	7																					
Nenn- größe	b ₁	b ₂	dg	d ₁₀	d ₁₁	d ₁₂	d ₁₃	e ₃	e ₄	e ₅	h ₁	h ₂	k ₂	16	17	18	l9	110	111	t ₅	†6	Masse ≈ kg	Kombinations fähig mit Axialkolben- motor Nenngröße
1.1	-	_	150	9	18	_	_	_	-	_	_	-	130	115	5		-	-	-	9	-	3	20/6,3
1.2	165	42,5	_	_	_	22	11	64	27	135	145	80	_	118	-	110	35	-	-	-	13	5	20/6,3
2.1	-	-	160	9	18	-	-	_	-	-	_	-	140	138	5	-	_	-	_	11	-	4	32/6,3
2.2	170	45	-	-	-	22	11	82	29	145	162,5	90	-	140	-	132	40	-	-	-	11	6	32/6,3
3.1	-	-	185	11	22	_	-	-	-	-	-	-	160	158	6	-	-	-	-	15	-	6	50/6,3
3.2	210	50	-	-	-	25	14	102	30	175	182,5	100	-	162	-	152	45	-	-	-	19	10	50/6,3

TGL 25-15 207


Venn- größe	b ₁	b ₂	d9	d ₁₀	d ₁₁	d ₁₂	d ₁₃	e ₃	e ₄	e ₅	h ₁	h ₂	k ₂	16	17	I ₈	lg	110	111	t ₅	t ₆	Masse ≈ kg	Kombinations fähig mit Axialkolben- motor Nenngröße
1.1	_	_	210	13,5	28	_	-	_	_	_	_	-	180	178	6	_	_	_	-	17	-	9	63
1.2	215	45	-	-	-	25	13,5	116	33	180	205	112	-	182	-	172	45	-	-	-	21	13	63
2.1	_	_	240	13,5	28	-	_	-	-	1925	_	_	200	208	6	-	_		-	17	-	13	100
2.2	240	50	-	_	-	30	17,5	136	38	200	228	125	_	212	_	200	50	_	162	_	21	16	100
3.1	-	-	300	17,5	36	-	-	-	-	-	-	_	200	246	8	-	-	198	-	21	-	23	160
3.2	290	65	-	-	-	30	17,5	168	42	250	268	140	-	252	-	240	65	· ·	202	-	24	27	160
4.1	-	-	320	17,5	36	_	_	-	-		-	-	280	270	8	-	-	220	-	24	-	28	250
4.2	320	70	_	_	_	36	22	182	46	275	298	160	_	275	_	263	70	_	220	-	24	36	250

Wellenenden

Belastung der Wellenenden

Nenndruck	Nenngröße		Zulä	ssige Belastung			
		rac	lial .		axial in	Richtung	
		bezogen	auf -15	zum I	Motor	vom I	Motor
		N	kp	N	kp	N	kp
6,3	20/6,3	800	80	2800	280	300	30
6,3	32/6,3	1200	120	4000	400	450	45
6,3	50/6,3	1600	160	6000	600	600	60
8,0	63	2000	200	8000	800	750	75
8,0	100	2800	280	12000	1200	1000	100
8,0	160	3800	380	16500	1650	1300	130
8,0	250	5400	540	20000	2000	1500	150

Abmessungen/Vierkantwellenende

Nenndruck	Nenngröße	d ₁	d ₂	d ₃	d₄ H8	SW	I ₁	I ₂	t ₁ ± 1	t ₂ ± 1	t ₃	α
	20/6,3	25	32	4 x M4	8	10	20	12		2,5	8,5	90°
6,3	32/6,3	32	44	3 x M6	8	10	16	10	0	_	8	120°
	50/6,3	32	44	3 x M6	8	12	15	10	1	-	8	120°
	63	40	50	3 x M6	-	14	22	-	0,5	-	8	120°
8,0	100	40	50	3 x M6	-	14	22	-	1	-	8	120°
5,15	160	40	50	3 x M6	-	17	23	-	1	_	8	120°
	250	40	50	3 x M6	-	17	22	-	1	_	8	120°

Belastung: Das Vierkantwellenende kann maximal mit 20% des Nenndrehmomentes belastet werden. Radiale und axiale Kräfte sind zu vermeiden.

Bestellbeispiele

Benötigt wird:

Axialkolbenmotor, nicht verstellbar

Nennverdrängungsvolumen 32 cm³

Nenndruck 6,3 MPa

Bestellt wird:

Axialkolbenmotor 32/6,3 TGL 10857

Benötigt wird:

Axialkolbenmotor, nicht verstellbar

Nennverdrängungsvolumen 100 cm³

Nenndruck 8,0 MPa

Bestellt wird:

Axialkolbenmotor 100 TGL 25-15207

Benötigt wird:

Axialkolbenmotor, nicht verstellbar

Nennverdrängungsvolumen 32 cm³

Nenndruck 6,3 MPa

Bauform: Flanschbefestigung

Bestellt wird: Benötigt wird: Axialkolbenmotor 32/6,3 TGL 10857 mit Flanschhülse 2.1

Axialkolbenmotor, nicht verstellbar
 Nennverdrängungsvolumen 100 cm³

Nenndruck 8,0 MPa Bauform: Fußbefestigung

Bestellt wird:

Axialkolbenmotor 100 TGL 25-15 207 mit Fußhülse 2.2

Bewährte Einsatzgebiete

Werkzeugmaschinen
Textilmaschinen
Plast- und Elastmaschinen
Spezialfahrzeuge
Fleischereimaschinen
Walzwerksausrüstungen